Eﬂi RILESS VNI LKLV
ngineeringjourna

Volume Fifty-Seven

NEWS BRIEF 2
IN-DEPTH ARTICLES Protecting the R&D Investment—Two-Way Authentication and
Secure Soft-Feature Settings 3
Using the MAXQ3120 in Codec Applications 9
Developing FFT Applications with Low-Power Microcontrollers 13
DESIGN SHOWCASE Precision Circuit Monitors Negative Supply Current 18

v x(n) LOW-POWER
N~ ADC MICROCONTROLLER

DFT{x(N)} = X(k)

(1)

x[0]

X[1]
x[2]

x[3]
x[4]

x[5]
X[6]

X[71

AND

WK = e-j2ngN
— cos(2TKy._icin 2tk
=cos(N)-jsin(N)

Figure 1. The spectrum of an input voltage is calculated using an FFT application. (See article inside, page 13.)
Figure 2. A butterfly computation is used to perform an FFT for N = 8. (See article inside, page 14.)

|\| e WS B rie

mmmm MAXIM REPORTS RECORD REVENUES FOR ITS SECOND QUARTER 2006 AND
10% QUARTER OVER QUARTER BOOKINGS GROWTH

Maxim Integrated Products, Inc., (MXIM) reported a record for net revenues of $445.9 million for its second quarter ending
December 24, 2005, a 5.1% increase over the $424.4 million reported for the first quarter of fiscal 2006. Pro forma net income excluding

stock-based compensation expense for the quarter was $140.0 million or $0.42 diluted earnings per share and GAAP net income was
$112.6 million including stock-based compensation or $0.33 diluted earnings per share. This compares to $133.2 million of pro forma net
income or $0.39 diluted earnings per share reported for the first quarter of fiscal 2006 and GAAP net income of $105.4 million including
stock-based compensation or $0.31 per diluted share.

Gross bookings for its second quarter were approximately $506 million, a 10% increase from the first quarter’s level of $459 million.
Gross turns orders received in the quarter were approximately $230 million, a 10% increase from the $208 million received in the prior
quarter. Bookings increased in all geographic locations. Second quarter ending backlog shippable within the next 12 months was
approximately $370 million, including approximately $329 million requested for shipment in the third quarter of fiscal 2006. The Company’s
first quarter ending backlog shippable within the next 12 months was approximately $330 million, including approximately $296 million that
was requested for shipment in the second quarter of fiscal 2006.

Pro forma research and development expense (excluding stock-based compensation expense) was $92.6 million or 20.8% of net
revenues in the second quarter and GAAP research and development expense was $116.9 million or 26.2% of net revenue including
stock-based compensation of $24.3 million. Pro forma selling, general and administrative expense (excluding stock-based compensation
expense) was $23.8 million in the second quarter or 5.3% of net revenues while GAAP selling, general and administrative expense was
$31.1 million or 7.0% of net revenue including stock-based compensation of $7.2 million.

During the quarter, the Company repurchased 9.2 million shares of its common stock for $334.6 million, paid dividends of
$40.0 million, and acquired $37 .4 million in capital equipment. Accounts receivable increased $8.1 million in the second quarter to
$221.0 million due to the increase in net revenues. Pro forma inventories (excluding stock-based compensation expense) increased to
$186.5 million from the previous quarter. GAAP reported inventories for the second quarter increased to $197.8 million and includes
$11.3 million for stock-based compensation.

The Company expects to implement a program that will allow its employees, excluding officers, holding vested stock options with an
exercise price of at least $35 to exchange them for Restricted Stock Units (RSUs) vesting quarterly over the next 12 months at a specified
exchange rate derived using the Black-Scholes model. In some cases, employees may elect to exchange these vested options for RSUs at a
specified exchange rate that is greater than that derived using the Black-Scholes model and these RSUs will vest quarterly over the next
18 months. This program, details of which will soon be filed with the Securities and Exchange Commission (SEC) and communicated to
those eligible to make an exchange, is designed to foster retention of our employees and to better align their interests with those of our
stockholders. This exchange program may reduce the number of Maxim’s outstanding employee stock options and provide ownership of
Maxim stock to employees making the exchange election. A total of approximately 20 million vested options are covered by the exchange
program and, if all options are tendered, approximately 4 million RSU’s would be issued. Maxim continues to believe that equity-based forms
of compensation are most effective in motivating employees and aligning their goals with shareholders’ interests.

Employees holding stock options eligible for exchange in the program should carefully read the Company's Offer to Exchange certain
stock options for RSU’s, the Company’s letter of transmittal and related tender offer materials when they become available because they will
contain important information, including, among other things, the various terms and conditions governing the program. Copies of the
Company's Offer to Exchange certain stock options for RSU’s, the letter of transmittal and related tender offer materials will soon be mailed
to all employees holding stock options eligible for exchange in the program and, once filed with the SEC, may be obtained at no charge from
the SEC's web site at www.sec.gov.

Mr. Gifford commented: “Our second quarter performance is a positive reflection of our long-term strategy, which is to serve and gain
market share in many analog industry market segments. We believe the future prospects for the analog industry are exciting and that we are
well positioned for profitable growth.”

Mr. Gifford concluded: “The Company’s Board of Directors has declared a cash dividend for the third quarter of fiscal 2006 of
$0.125 per share. Payment will be made on February 28, 2006 to stockholders of record on February 13, 2006.”

For the complete Q206 press release, including safe harbor information, go to: www.maxim-ic.com/NewsBrief

The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas Semiconductor logo is a registered trademark of
Dallas Semiconductor Corp. © 2006 Maxim Integrated Products, Inc. All rights reserved.

Protecting the
R&D Investment —
Two-Way
Authentication and
Secure Soft-
Feature Settings

In the age of identity theft and falsified IDs, assuring
positive identification is of paramount importance. This is
not only true for individuals, but also for electronic
products. System vendors need to protect their products
against hacker attacks from the “outside” and ensure that
the security is not compromised on the “inside” through
cloned hardware. The key to realizing these diverging
security requirements is authentication.

What is Authentication?

Authentication is a process to establish proof of identity
between two or more entities. In the case of one-way
authentication, one party proves its identity to another.
With two-way authentication, both parties prove their
identity to each other. The most commonly used method of
authentication is the password. The main problem with
passwords is that they are exposed when used, making
them vulnerable to spying.

After reviewing the historical use of cryptography, in 1883
the Flemish linguist Auguste Kerckhoffs published a
groundbreaking article on military cryptography.
Kerckhoffs argued that instead of relying on obscurity

(e.g., an undisclosed, nonscrutinized algorithm), security
should depend on the strength of the algorithm and its
keys. In the event of a security breach, Kerckhoffs
asserted, only the keys would need to be replaced, not the
whole system.

Key-based authentication works as shown in Figure 1: a
(secret) key and the to-be-authenticated data (“message”)
are taken as input to compute a message authentication
code, or MAC. The MAC is then attached to the message.
The recipient of the message performs the same
computation and compares its version of the MAC to the
one received with the message. If both MACs match, the
message is authentic.

INPUT MESSAGE
SECRET KEY

ALGORITHM

Figure 1. This MAC computation model exemplifies key-based
authentication.

There is, however, a weakness with the basic MAC
computational model. An intercepted message can later,
or subsequently, be replayed by a nonauthentic sender
and be mistaken as authentic. To circumvent this inherent
MAC weakness and prove the authenticity of the MAC
originator, the recipient generates a random number and
sends it as a challenge to the originator. The MAC
originator must then compute a new MAC based on the
secret, message, and challenge and send it back to the
recipient. If the originator generates a valid MAC for any
challenge, it is quite certain that it knows the secret and,
therefore, can be considered authentic (see Figure 2).
This process is known as challenge-and-response
authentication.

1-Wire is a registered trademark of Dallas Semiconductor Corp.

[MESSAGE DATA

SECRET KEY HOST SYSTEM
FROM SECURE MEMORY } MAC RECIPIENT
MESSAGE DATA ALGORITHM
FROM ACCESSORY DEVICE l/v | COMPARISON
[RANDOM CHALLENGE }('
SRR TIIIIIITNCILL LTI e 1 Wie®

ACCESSORY
MAC ORIGINATOR

SECRET KEY

FROM SECURE MEMORY /

@»

Figure 2. The MAC model’s weakness, allowing an intercepted message to be mistaken as authentic, can be resolved by the challenge-and-

response authentication process.

In cryptography, an algorithm that generates a fixed-length
MAC from a message is called “one-way” hash function.
One-way indicates that it is extremely difficult to deduce
the usually larger message from the fixed-length MAC
output. With encryption, in contrast, the size of the
encrypted message is proportional to the original message.

A thoroughly scrutinized and internationally certified one-
way hash algorithm is SHA-1, developed by the National
Institute of Standards and Technology (NIST)
(www.itl.nist.gov/fipspubs/fip180-1.htm). SHA-1 has
evolved into the international standard ISO/IEC 10118-
3:2004, and the math behind the algorithm is publicly
available through the NIST website. Distinctive
characteristics of the SHA-1 algorithm are: 1)
irreversibility —it is computationally infeasible to
determine the input corresponding to a MAC; 2) collision-
resistance —it is impractical to find more than one input
message that produces a given MAC; and 3) high
avalanche effect—any change in input produces a
significant change in the MAC result. For these reasons, as
well as the international scrutiny of the algorithm,
Maxim/Dallas Semiconductor selected SHA-1 for
challenge-and-response authentication of its secure
memories.

Low-Cost Secure Authentication —
A Functional Implementation

Thanks to its 1-Wire interface, the DS2432 EEPROM
device with a SHA-1 engine can easily be added to any
circuit with digital processing capabilities, such as a
microcontroller (LC). In the simplest case, all that is
needed is one free I/O pin and a pullup resistor for the
1-Wire interface, as shown in Figure 3. If the computing
capabilities on the board or the remaining program
storage space are insufficient to compute a SHA-1 MAC,

one can use a DS2460 SHA-1 coprocessor or leave this
task to the nearest host in the system or network. The
coprocessor has the additional advantage of storing the
system secret in secure memory rather than in the host-
process program code.

Embedded HW/SW License Management

Reference designs, which are subsequently licensed and
possibly manufactured by third parties, require barriers to
prevent illegal use of the intellectual property. For revenue
reasons, it is also necessary to track and confirm the
number of reference uses. A preprogrammed DS2432
(secret and memory settings installed prior to delivery to
the third-party manufacturer) easily solves these
requirements, and more. As a power-up self-check, the
reference (Figure 4) performs an authentication sequence
with the DS2432. Only a DS2432 with valid secret, known
by just the licensing company and reference electronics,
will successfully reply with a valid MAC. The reference
processor will take appropriate, application-specific action
if an invalid MAC is detected. The additional benefit of this
approach is the ability to selectively license and enable
reference features through settings in the DS2432’s secure
memory. (For more information on this concept, see the
section Soft-Feature Management.)

The DS2432 with a 64-bit valid secret is supplied to the
licensee or third-party manufacturer through one of two
secure methods: 1) preprogrammed by the company
licensing the reference; or 2) preprogrammed by
Maxim/Dallas Semiconductor per the licensing
company’s input and then delivered to the third-party
manufacturer. In either case, the number of devices sent to
the licensee or manufacturer is known and can be used to
validate license fees.

1-Wire LOCAL (IN-RACK)
. CONTROL NETWORK
| q uC
o OR
ﬂ- DALLAS ﬂ- DALLAS FPGA
¥ SEMICONDUCTOR P SEMICONDUCTOR
Y *RESISTOR VALUES
Ds§A21432 DS2460 1 DEPEND ON Ve,
; SHA-1 * SEE DEVICE DATA
SECURE COPROCESSOR 1 SHEETS FOR DETAILS
EEPROM =
L
1 =

Figure 3. A DS2432 EEPROM device is implemented in a typical board environment through use of a free 1/O pin and a pullup resistor.

iF‘urchase of 12C components from Maxim Integrated Products, Inc., or one of its sublicensed Assomated Companies, conveys a license under the Philips
12CPatent Rights to use these components in an 12c system, prowded that the system conforms to the | 2C Standard Specification defined by Philips.

Verification of Hardware Authenticity

When verifying hardware authenticity, there are two cases
to be considered (Figure 5): 1) a cloned circuit board with
an exact copy of the firmware/FPGA configuration; and 2)
a cloned system host.

EMBEDEDDED
PROCESSOR

REFERENCE
ELECTRONICS

T | OBALLAS

DS52432

Figure 4. A reference design is authenticated through use of the
DS2432.

[
]
> ¥ SEMICONDUCTOR

HoSTSYSTEM bl | DS2432

BOARD TO BE AUTHENTICATED

Figure 5. This HW authentication example shows a cloned circuit
board with an exact copy of the firmware/FPGA configur-
ation or a cloned system host.

In the first case, the firmware/FPGA attempts to
authenticate the cloned circuit board. The clone manu-
facturer must load a secret into the DS2432 in order to
write data into the user EEPROM. While this can make
the data look correct, the secret is not valid in the
system. Due to the complexity in changing the
firmware/FPGA and to remain compatible with the host,
the firmware/ configuration must be an exact copy of the
original. If the board performs a challenge-and-response
authentication of the DS2432 during the power-up phase,
the MAC generated by the DS2432 will differ from the
MAC computed by the microcontroller/FPGA. This
MAC mismatch is strong evidence that the board is not
authentic. The system performing a challenge/response
sequence with the board would detect this mismatch and
application-specific action would then be taken.

In the second case, the circuit board attempts to authenticate
the host system. The board can verify the authenticity of the

host using the following procedure: 1) generate a challenge
and let the DS2432 compute a challenge-and-response
authentication MAC; and 2) send the same MAC
computation input data (except for the secret, of course) to
the network host, which then computes and returns a
challenge-and-response authentication MAC from that data
and its own secret. If both MACs match, the board can
assume that the host is authentic.

Soft-Feature Management

Electronic systems range from handheld products to units
that fill several racks. The larger the unit’s size, the more
costly it is to develop. To keep the cost under control,
there is a desire to construct a large system from a limited
selection of smaller subsystems (boards). Often, not all
features of a subsystem are needed in the application.
Instead of removing these features, it is more cost-
effective to leave the board as is, and to simply disable
some features in the control software. This approach,
however, creates its own new problem: a smart customer
who needs several fully featured systems could just buy
one fully featured unit and several units with reduced
features. Then, using copied software, the simpler units
behave like the fully featured unit but for a lower price,
thus shortchanging the system vendor.

A DS2432 on the board of each subsystem protects the
system vendor from this type of fraud. Besides
performing challenge-and-response authentication, the
same DS2432 can store the individual configuration
settings in its user EEPROM. As explained later in the
Data Security section, the data is protected from
unauthorized changes, giving full control to the system
vendor. The configuration settings can be stored in the
form of a bitmap or code words, as deemed appropriate
by the system designer. For practical reasons, the
configuration should be as easy to set as possible. Due to
the 1-Wire interface in the DS2432, the designer only
needs to add a single transistor and a probe point, as
shown in Figure 6. Through the probe point, the
configuration can be written to the DS2432 without
powering the rest of the board. The MOSFET isolates
the DS2432 from the other circuitry without impeding
normal access to the DS2432 when the subsystem is
operated in its normal environment.

As an added security bonus, this method of setting
configurations allows for remote feature upgrade/change
after the system is installed at the customer’s site. Any
user EEPROM that is not used for configuration/feature
management is available for board identification in the
form of an electronic nameplate. This feature is
explained in detail in Application Note 178, Printed
Circuit Board Identification Using 1-Wire Products, on
the Maxim website at www.maxim-ic.com/an178.

2N7002 G

CONFIGURATION
PROBE POINT of 7.)s e “RESISTOR VALUES
<1—-= o ‘e DEPEND ON V.
* SEE DEVICE DATA
) : SHEETS FOR DETALS.
. W
OR T0 COMPENSATE FOR
Y [THE VOLTAGE DROP
(B DALLAS {®DALLAS FPGA 1 \choss THe mosrer,
Py Vg MUST BE HIGHER
D§2432 DS2460 [y THAN Vg SPECIFIED
SHA-1 SHA-T [INTHE DS2452 DATA SHEET
SECURE COPROCESSOR —
1
- =

Figure 6. Configuration settings can be written to the DS2432 by adding a single transistor and a configuration probe point.

DS2432 Authentication Feature Details

General Device Architecture

The major data elements and the data-flow paths of the
DS2432 1kb SHA-1 secure memory with 1-Wire interface
are shown in Figure 7. Easily recognized are the 8-byte
secret key and the buffer memory (scratchpad), which
temporarily stores the challenge. Data elements not
mentioned previously are the unique device ID number (a
standard 1-Wire feature), four pages of user EEPROM,
control registers, and system constants.

The device ID serves as a node address in 1-Wire
networks, but also contributes to authentication. The user

UNIQUE DEVICE ID #

READ

4 PAGES
OF 32-BYTE
USER EEPROM

READ

CONTROL REGISTERS

WRITE-AUTHENTICATION
MAC (HOST)

WRITE-AUTHENTICATION
__ MAC (SLAVE)

»
< |

Y

SHA-1
ENGINE

BUFFER MEMORY

> N
LOADED 8-BYTE SECRET

COMPUTED

DS2432 CONSTANTS

"~ SLAVE AUTHENTICATION MAC
(CHALLENGE AND RESPONSE)

Figure 7. All major data elements and data-flow paths are shown for the
DS2432 SHA-1 secure memory data-flow model.

memory holds the major part of the to-be-authenticated
“message.” Seed constants are needed to meet formatting
requirements and as padding to compose the 64-byte input
data block for the SHA-1 computation. The control
registers perform device-specific functions, such as
optional write protection of the secret or EEPROM
emulation mode; they do not contribute to the
authentication process in general.

Device ID number and user EEPROM can be read without
restriction. There is full read/write access to the buffer
memory. The secret can be loaded directly, but never read.
Changing the content of the user memory or the registers
requires that both host and slave (i.e., the DS2432)
compute matching write-authentication MACs to open the
path from the buffer memory to the EEPROM.

The DS2432’s SHA-1 engine can be operated in three
different ways, depending on the purpose of the MAC
result. In any case, the SHA-1 engine gets 64 bytes of
input data and computes from it a 20-byte MAC result.
The differences are in the input data. As a fundamental
requirement of secure systems, the host must either know,
or be able to compute, the secret of a slave device that is
valid/authentic in the application.

Challenge-and-Response Authentication MAC

A described previously in the application examples, the
primary purpose of the DS2432 is challenge-and-response
authentication. The host sends a random challenge and
instructs the DS2432 to compute a response MAC from
the challenge, the secret, data from one of the memory
pages selected by the host, and additional data that
together constitute the message (see Figure 8).

After it has finished computing, the DS2432 sends its
MAC to the host for verification. The host then duplicates
the MAC computation using a valid secret and the same
message data that was used by the DS2432. A match of

INTERNAL 8-BYTE SECRET

A A

A A

32-BYTE MEMORY PAGE

13 BYTES OF CONSTANTS

A A

NUMERIC VALUE OF SELECTED PAGE (1 BYTE)

SHA-1ENGINE ~ |—

DS2432 FAMILY CODE (1 BYTE)
DS2432 48-BIT SERIAL NUMBER (6 BYTES)

A A

3 BYTES OF SCRATCHPAD >

(3-BYTE RANDOM CHALLENGE
FROM THE HOST)

¥

TOTAL SHA-1 ENGINE INPUT: 64 BYTES (512 BITS)

20-BYTE MESSAGE
AUTHENTICATION CODE
(MAC) RETURNED TO THE HOST

Figure 8. Specific DS2432 SHA-1 engine input data is shown for the challenge-and-response authentication MAC.

the MAC received from the DS2432 authenticates the
device, as only an authentic DS2432 will respond to the
challenge-and-response sequence correctly. It is crucial
that the challenge is based on random data. A never-
changing challenge allows replay attacks using a valid,
static, recorded and replayed MAC instead of a MAC that
is instantly computed by an authentic DS2432.

Data Security

Beyond proving the authenticity of a slave device, it is
highly desirable to know that the data stored in the device
can be trusted. For this reason, write access to the DS2432
EEPROM is securely restricted. Before copying data from
its scratchpad buffer memory to the EEPROM or control
registers, the DS2432 requires the requesting host to
supply a write-access authentication MAC to prove its
authenticity. The DS2432 computes this MAC from the
new data in its scratchpad buffer memory, its secret, data

from the memory page to be updated, and additional data
(see Figure 9).

An authentic host knows the secret and computes a valid
write-access MAC. When receiving the MAC from the
host during the copy command, the DS2432 compares it to
its own result. Data is transferred from the buffer memory
to the destination in EEPROM only if both MACs match.
Of course, memory pages that are write-protected cannot
be modified, even if the MAC is correct.

Secret Protection

The architecture of the DS2432 allows direct load of a
secret into the device. Secret protection is provided by both
read protection and, if desired, write protection, which
prevents the secret from ever being changed. This level of
protection is effective so long as access to the secret is
secure and controlled at the equipment production site.

INTERNAL 8-BYTE SECRET

8 BYTES OF SCRATCHPAD

MEMORY

28 BYTES OF SELECTED

MEMORY PAGE

NUMERIC VALUE OF SELECTED PAGE (1 BYTE)

SHA-TENGINE ~ |—

DS2432 FAMILY CODE (1 BYTE) >

DS2432 48-BIT SERIAL NUMBER (6 BYTES)

12 BYTES OF CONSTANTS

v

TOTAL SHA-1 ENGINE INPUT:
64 BYTES (512 BITS)

20-BYTE RESULT

Figure 9. SHA-1 engine input data is used to compute a write-access authentication MAC.

The quality of the secret can be increased in various ways:
1) let the DS2432 compute its secret; 2) let the DS2432
compute its secret in multiple stages performed at different
sites; 3) create device-specific secrets by including the
unique device ID number in the computation of the secret;
or 4) a combination of 2 and 3.

In ‘1’ above, if each DS2432 computes its secret, only the
ingredients of the secret are known; the secret itself is never
exposed. If the secret is computed in multiple stages using
different sites, as in ‘2’ above, only the “local” ingredients
of the secret are known. This approach provides a method
to control knowledge of the “final” secret. If the secrets are
device-specific (‘3 above), an additional computing step is
required for the host. However, the potential damage is
minimal if a device secret is accidentally discovered. If the
secret is computed in multiple stages and made device-
specific (‘4’ above), the highest possible secrecy is
achieved. However, the hosts, like the slaves, need to be set
up at different sites to ensure system secrecy.

Before computing a secret, it is necessary to first load a
known value as secret. With the help of this known secret,
32 bytes of the data that will be used in computing the
new secret must be written to one of the four memory

pages. Next, a partial secret should be written to the
DS2432 scratchpad buffer memory. The partial secret
could, for example, be the number of the memory page
used for the computation and the unique device ID
number (excluding the CRC byte) or any other
application-specific 8-byte value.

If instructed to compute a secret, the DS2432 starts its
SHA-1 engine and computes a MAC using the input data
items shown in Figure 10. The lower 8 bytes of the
20-byte MAC are automatically copied to the secret’s
memory location and become effective immediately.

Conclusion

Knowing secure authentication functions and
implementing them wisely gives a competitive advantage.
Authentication not only protects intellectual property, but
also helps reduce production cost through common HW
platforms with secure, soft-feature settings. The DS2432’s
data security even allows remote configuration changes,
saving the technician valuable time. As the DS2432
exemplifies, a small silicon chip can make a big difference
to the bottom line.

INTERNAL (CURRENT) 8-BYTE
SECRET

8-BYTES OF SCRATCHPAD
(PARTIAL SECRET)

ENTIRE SELECTED MEMORY
PAGE (32 BYTES)

16 BYTES OF CONSTANTS

U

TOTAL SHA-1 ENGINE INPUT:
64 BYTES (512 BITS)

SHA-1 ENGINE

NEW INTERNAL 8-BYTE
SECRET

Figure 10. Input data is used for a device-performed secret computation; the lower 8 bytes of the 20-byte MAC result become the new secret.

Using the
MAXQ3120 in
Codec Applications

Modern telephony is digital. Gone are the chattering
Strowger switches with hundreds of electrical contacts, the
miles of twisted-pair cable resembling so much tie-dyed
spaghetti, and the microwave towers that once dotted the
countryside. Today, voice traffic is converted to digital
Sform at the earliest possible opportunity and carried on an
optical fiber alongside thousands of other voice calls,
email messages, and web pages.

Digital telephony fueled the information age and continues
to change the communication landscape with technologies
like voice over Internet protocol (VoIP). Yet one fact
remains —somewhere along the line, voice must be
converted to bits, and then bits back to voice.

This is the job of the codec. The word is a contraction of
coder/decoder, and the device is conceptually simple. It
consists of an analog-to-digital converter (ADC) to
change audio input into a stream of bits, a digital-to-
analog converter (DAC) to convert the received
bitstream back into audio, and an interface to
insert/remove the digitized audio to/from a bus on which
other codecs can be attached.

Typically, a codec is a stand-alone, mixed-signal
semiconductor. This stand-alone IC approach is fine as
long as the codec is used in a simple application, such as a
line card for an end-office switch. Often, however, it is
desirable to perform some kind of preprocessing of
transmitted audio (such as peak limiting, dynamic range
compression, or spectral shaping) or post-processing of
received audio (such as noise reduction). These pre-/post-
processing tasks are a problem for a stand-alone codec.
This is because once the analog audio is presented
to/taken from that codec, there is no further opportunity to
perform processing—the stand-alone codec interfaces
directly with the PCM highway. In these cases, a system
designer is left with two unwieldy options: either perform
this processing in the analog domain (often expensive and
possibly noisy), or abandon the use of stand-alone
monolithic codecs and perform the processing in the
digital domain with stand-alone precision ADC and DAC
chips. Neither option is ideal.

In this article, a method is presented for using the
MAXQ3120 microcontroller (uC) with an external DAC
as a voice codec that can perform additional processing of
the inbound and outbound bit streams.

Codec Basics

Long before digital telephony was considered, a range of
frequencies from about 300Hz to 3.5kHz was determined
necessary if a voice signal was to remain intelligible.
Frequencies outside this range contributed to the fidelity
of the speech signal, but not to the intelligibility. (In fact,
it turned out that band-limited signals were more
intelligible than wideband signals.) Following Nyquist's
criterion that a signal must be sampled at least twice as
often as the highest frequency of interest, all voice codecs
operate at 8,000 samples per second—more than twice the
3.5kHz required—and each sample is converted into a
digital codeword.

The size of the codeword, however, presented a problem.
In any digital system, there is a tradeoff between signal
integrity and word size. For best fidelity, a system designer
could choose a large word size, but more bits require
greater bandwidth, and bandwidth costs money.
Alternately, a designer could select a smaller word size to
save bandwidth costs, but voice quality would suffer. Tests
indicated that small codewords—about eight bits—would
provide good voice quality, but only as long as the speaker
spoke in a quiet, consistent voice. Normal variations in
voice volume would saturate the transmitter, causing
clipping and distortion. One could reduce the gain to
eliminate this clipping at high levels, but normal voice
levels would use only four or five bits, making soft voices
sound scratchy and unnatural. To accommodate the full
range of human voices, from the softest whisper to the
loudest shout, it seemed that twelve to fourteen bits of
resolution was required.

The optimal solution was to use a nonlinear codec (see
Figure 1). This type of codec takes advantage of the fact
that the ear is more forgiving to small errors in loud sounds
than it is to small errors in soft sounds. In the figure,
silence centers around the zero line; soft voices deviate
only a small amount from the center line, and louder
voices deviate more greatly. In these devices, codes around
the zero line are packed more densely than codes far from
the zero line, resulting in a codec that gives acceptable
results for low-level signals, while maintaining good
dynamic range for high-level signals.

On the digital side, it is necessary to interface to a PCM
highway. Rather than connecting each codec to its
associated trunk equipment with a separate set of wires, a
number of codecs are now commonly connected together
on a shared bus—a PCM highway. To coordinate
transmission, the codecs share a bit clock and are signaled
to begin transmitting or receiving by an individual frame
pulse. In a typical North American standard, 24 codecs
can reside on a PCM highway clocked at 1,544,000 bits
per second by some type of sequencer logic. Every 125us,
the first codec receives a frame pulse and transmits eight
bits onto the highway. After 8-bit clocks, the second

CODEC RESPONSE CURVE
1.00000
0.80000 I
0.60000 I
0.40000 //
0.20000 J

0.00000
-0.20000

-0.40000 /
/
/

RELATIVE AMPLTUDE

-0.60000
-0.80000
-1.00000

0

50 100 150 200 250 300
CODE

Figure 1. This is the response curve for a typical PCM codec. The
region around zero relative amplitude contains many more
codes than the ends of the curve, allowing the codec to
maintain both high voice fidelity and wide dynamic range.

codec receives its frame pulse, and so forth. After all 24
codecs have transmitted their data, the sequencer provides
one bit time for signaling purposes, and then repeats the
sequence. Thus, the numbers are generated as:

[(8 bits per sample x 24 channels) + 1 signaling bit] x
8,000 samples per second = 1,544,000 bits per second

Types of PCM Codecs

The world has standardized on a frame rate (and thus, a
sampling rate) for PCM codecs used in telephony. There
are two types of transcoding algorithms to consider: A-law
used in Europe, and p-law used primarily in the United
States and Japan. There are two basic line rates in use: E1
(2.048Mbps) in Europe and DS1 (1.544Mbps) in the
United States. The design presented in this paper is a DS1
(also known as T1) codec, capable of operating in A-law
or p-law mode.

A p-law codec encodes samples according to the following
formula:

where L is the characteristic of the equation, typically 255.

An A-law codec encodes according to a somewhat
different formula:

A 1
—|X| , 0=x< —
y = sgn(x) 1 +1nA A
1+InAlx| 1
-, —=<x=1
1+lhA A

where A is the characteristic of the equation, usually 87.6,
or in some cases, 87.7. Note that for values close to zero,
the A-law function is linear; it becomes logarithmic only
for input values greater than 1/A.

In actual practice, these two companding laws
produce very similar-looking curves and these linear
formulas are virtually never used. Instead, piecewise-
linear approximations are called upon to ease
computational overhead. The design presented here,
however, implements these exact formulas by means
of a lookup table.

How a Microcontroller Becomes a Codec

The MAXQ3120 nC contains two precision 16-bit ADC
channels and a 16 x 16 multiplier with a 40-bit
accumulator. While the MAXQ3120 has no DAC
channel, there are precision serial DACs available at low
cost that can serve in this capacity. All that remains is to
build software to connect these peripheral devices.

Encoding

There are three steps to encoding: converting the analog
signal to digital, resampling and filtering the digitized
samples, and, finally, compressing the samples to an eight-
bit representation using either A-law or p-law transcoding.

First is the A/D conversion step, the easiest effort because
of the ADC channels built into the MAXQ3120. The
MAXQ3120 produces a new 16-bit result every 48us. This
means that the system has 384 instruction cycles at a
processor clock of 8MHz to process the sample.

Fortunately, processing the sample is a simple matter of
reading the ADC and storing the data in a circular buffer.
The buffer always contains the 32 most recent 16-bit
samples. The MAXQ3120 contains 256 16-bit words of
RAM. Consequently, the circular buffer consumes only
12.5% of the available RAM for a single channel.

Although the ADC produces a sample every 48us, the
communication networks require a new sample every
125pus. Thus, whatever else we do with the signal, it
must be resampled—the second step to encoding. One
limited method would accept only the most recent
sample for conversion when a frame pulse is received
and cast away all other samples. But the MAXQ3120
can do better than this.

Upon each frame pulse, the MAXQ3120’s codec software
begins applying a 31-tap FIR filter to the accumulated
samples in the circular buffer. The filter has a 3dB point at
3.5kHz, and thus provides the anti-aliasing and additional
reconstruction that reduces noise in the £A ADC channels.
The result of the filter process is a 16-bit sample ready for
A-law or p-law compression.

10

Table 1. First Ten p-Law and A-Law Codes

Code p-Law A-Law
0 0000 0000
1 0005 000F
2 000B 001F
3 0011 002F
4 0018 003F
5 001F 004F
6 0026 005F
7 002D 006F
8 0035 007F
9 003D 008F

There are several ways to convert a value from 16-bit
linear to its code. Direct calculation and piecewise
approximation are two popular methods. Rather than use
either of these methods, we take advantage of the relatively
large program space of the MAXQ3120 by setting up two
128-word tables, one for p-law encoding/decoding and a
second for A-law (see an abbreviated version in Table 1).
This allows us to accomplish the third step of encoding,
which is to compress the samples to an eight-bit
representation. At startup, an external pin is polled and,
based on the level of that pin, one or the other of the 128-
word tables is loaded into RAM. The encoding process
operates as follows:

* Take the absolute value of the 16-bit linear PCM sample.

Keep track of the sign bit.

e Now perform a binary search of the applicable table:
compare the PCM sample to the middle value of the
table. If the PCM sample is less than the middle value,
consider only the bottom half of the table; if the sample
is greater than the middle value, consider only the top
half. Repeat until there are only two table entries left, and
take the closest one.

* The code to emit is the index of the table entry. For
example, if the sample value was 0x006D and the
conversion was to A-law, the nearest value in the table
above would be 0x006F. Its index is 7; this is the code
to emit.

* Finally, apply the sign of the original sample value.

The resulting 8-bit number is the logarithmic PCM
value. This is not, however, the end. PCM values emitted
on the network are not just two's complement binary
values. Instead, each transcoding law has special rules
that apply.

For p-law:

* Negative numbers have a zero sign bit; positive values
have a one sign bit.

e The magnitude value is inverted. Therefore, zero is

represented by Ob11111111, while +1 is represented by
Ob11111110. This guarantees a large number of one bits
in the transmitted stream. (Many types of physical-layer
transmission mechanisms have level transitions only on
one bits; a high number of one bits thus makes clock
recovery easier.)

There is a “positive zero” value and a “negative zero”
value, represented by Ob11111111 and ObO1111111,
respectively.

e The largest negative number is -127, represented by
0b00000000. However, to preserve timing integrity,
many systems do not permit an all-zero value. These
systems automatically prevent the all-zero code by
inverting bit 1. While this creates an irreversible
change to the code stream (0bO0000000 becomes
0b00000010), it causes little change in the perceived
sound for audio transmission—both codes are terribly
loud. (The design presented here does not perform this
function, but it is an easy change to make.)

For A-law:
e Just as in p-law, negative numbers have a zero sign bit.

e Just as in p-law, there is a “negative zero” value and a
“positive zero” value, represented by 0b00000000 and
0b10000000, respectively.

* Before transmission, every A-law word is XOR’ed with
0x55, effectively inverting every other bit in the byte.
Like inversion for p-law, this guarantees a high ones
density, making clock recovery easier.

Decoding

Decoding an 8-bit PCM sample is much easier than
encoding, as no resampling of the signal must be done.
Once the PCM law rules have been applied, an 8-bit,
signed-magnitude value remains. Use that value as an
index into the applicable PCM table (taking sign into
account). The result is a 16-bit, signed value ready for
delivery to the DAC.

The converter chosen for this project is the MAX5722
dual-channel, 12-bit DAC available in an economical
8-pin uMAX® package. Like most DACs, the
MAXS5722 requires an external voltage reference.
Fortunately, there is a 1.25V bandgap voltage reference
on the MAXQ3120 suitable for this purpose.

The MAXS5722 is a serial-interface DAC, meaning that the
pC must create a serial stream suitable for the DAC. The
DAC interface is synchronous, so it does not need a
continuous clock—it only requires a clock when chip
select is low. This allows the use of a 3-wire interface
using only general-purpose I/Os from the uC.

In this design, note that the input range for the ADC
channels is -1.0V to +1.0V, while the range for the

UMAX is a registered trademark of Maxim Integrated Products, Inc.

11

DAC output channels is 0 to +1.25V. In a real
telecommunications application, such as a line card, it is
likely that these levels would be translated to some other
analog level (it is common, for example, to define 1mW
into a 600Q impedance as 0dBm, the maximum level
typically encountered in a telecommunications network).
If keeping the input and output levels identical is
important in your application, see the MAX5722 data
sheet (at www.maxim-ic.com/MAXS5722) for details on
producing a bipolar output.

The PCM Bus

Now that we know how to convert analog waveforms into
compressed PCM format and back, only one issue is left:
interfacing with the PCM bus.

Most often, interfacing with a PCM highway involves
connecting to a 4-wire bus: a transmit data line upon
which terminals place their data; a receive data line upon
which the trunk equipment places its data and from
which the terminals receive data; a frame sync line that is
typically unique to each terminal, and pulses to indicate
when the bus contains data intended for that terminal;
and a bit clock. Because our codec is intended as
terminal equipment, it will receive the bit clock and the
frame pulse, receive data on the receive data line, and
transmit its data on the transmit data line.

In a T1 system, the clock runs at 1.544MHz. That clock
rate means that we must respond very quickly, within
only a few clock cycles, when a frame pulse arrives. One
bit time is a little more than 625ns, or five instruction
cycles. Because this time is much less than typical
interrupt latency (when the interrupt, context save, and
overhead are considered), simply responding to the frame
pulse signal with an interrupt is not fast enough. Another
solution must be found.

Our solution uses one of the three timers in the
MAXQ3120 to interrupt the processor a few
microseconds before the frame pulse is expected to
arrive. When the frame pulse finally does arrive, the
processor has been interrupted, has saved its context, and
is ready to dedicate every cycle to the PCM bus task. It
works as follows. Set up a timer to expire in 110us and
start the timer at the end of each frame event after all bits
have been shifted out. In a T1 system, for example, two
samples are shifted out in 10.4us. When the timer
interrupts the processor, software immediately begins
looking for the leading edge of a frame pulse. This is the
only interrupt in the system. Everything else is polled and
can wait until the important task of getting the PCM data
on and off the bus is completed.

Once the frame pulse arrives, the processor stays very
busy. It has to shift the transmit buffer and write the
output bit to the port; then it reads the input bit and shifts

the receive buffer in five cycles. The MAXQ3120
precisely accomplishes these tasks.

You may notice that this discussion has focused on a T1
bus, but what about E1? At 2.048MHz, the E1 system
only allows slightly more than 488ns—or less than four
instruction cycles—per bit. Thus, management of an E1
PCM bus would require help from external hardware.
For example, an inexpensive shift register driven from
the bit clock would provide relief from the rigors of bit-
level timing.

Additional Features

The codec is complete. However, as stand-alone codecs
are inexpensive and plentiful, it makes no sense to build a
codec with a pC unless, of course, you have an ulterior
motive. Here are a few ideas that might motivate a
designer to consider the uC system:

e Prefiltering While the signal is in the linear PCM
format, it is a perfect opportunity to apply
equalization, dynamic range compression, noise
gating, or any number of other operations on the
signal. Although the MAXQ3120 is not a DSP in the
traditional sense, these functions are easily within the
range of horsepower available in the MAXQ®
processor.

e In-Band Signaling Extraction Efficient, simple
algorithms are available to detect in-band tones in a
linear PCM stream. These algorithms could be
exploited to detect DTMF digits and use those to
enable certain features and functions. One could also
use tone detection to determine the progress of a call
by precisely detecting dial tone (in North America,
350Hz + 440Hz), station ring (440Hz + 480Hz), and
busy signal (480Hz + 620Hz).

e Conference Bridge 1t is simple to mix the received
audio of channel 1 and combine it with the transmitted
audio of channel 2, and vice versa. By doing this, you
have effectively created a digital conference bridge for
two channels. Since the bridge is digital, there is no
loss of voice quality. If you wish to bridge more than
two channels, simply add more MAXQ3120 devices.

Conclusion

While the MAXQ3120 is not specifically targeted to the
telecommunications community, its on-chip precision
ADCs and DSP functionality provide the designer with a
broad range of opportunities to create customized
hardware and software solutions. The wide range of
available development tools simplifies design.

MAXQ is a registered trademark of Maxim Integrated Products, Inc.

12

Developing FFT
Applications with
Low-Power
Microcontrollers

As low-power microcontrollers (uCs) begin including
peripherals that were formerly reserved for larger
microprocessors, ASICs, and DSPs, new opportunities
for computing complex algorithms at low power levels
are becoming possible. This article describes a Fast
Fourier Transform (FFT) application (developed using a
low-power uC) that includes a single-cycle hardware
multiplier.

This FFT application computes, in real-time, the spectrum
of an input voltage (Vy in Figure 1). To accomplish this,
an analog-to-digital converter (ADC) samples Vyy and
transfers those samples to the nC. The pC then performs
a 256-point FFT on the samples to obtain the spectrum of
the input voltage. For testing purposes, the nC calculates
the magnitude of the spectrum and transfers the results to
a PC where they are displayed in real time.

x(n) LOW-POWER IX(K)!

v
N1 ADC MICROCONTROLLER

DFTIX(N)} = X(K)

Figure 1. The spectrum of an input voltage is calculated using an FFT
application.

The firmware for this FFT application is written in C for a
16-bit, low-power nC in the MAXQ2000 family. Interested
readers can download the firmware and the circuit
schematic for this project from the web article of the same
name at www.maxim-ic.com/AN3722.

Background

To determine the spectrum of the sampled input signal, we
must compute the Discrete Fourier Transform (DFT) of
the input samples. The DFT is defined as:

N-1 -j2mkn

Xk = D x(me ¥

n=0

for 0<k=<N-1 (Eq 1)

where N is the number of samples, X(k) is the spectrum,
and x(n) is the set of input samples. Expanding this
summation using Euler’s identity, and separating the input
samples and spectrum into their real and imaginary
components, yields the following equations:

Xre(k) = NZ; :xRe(n)cos(zfj\’,‘”) + xlm(n)sin(zf;\fn)
- 5[5 "
= & [rimnin 22 o

The second term in the summation of equations 2 and 3
disappears because the input samples consist entirely of
real numbers. Assuming we have N samples, computing
equations 2 and 3 directly requires 2N2 multiplications
and 2N(N - 1) additions. Therefore, our DFT with 256
input samples would require 131,072 multiplications and
130,560 additions. Enter the FFT!

Many FFT algorithms exist. The common radix-2
algorithm used in this implementation continuously
decomposes the DFT into two smaller DFTs. For this to
be possible, N must be a power of 2. The steps involved in
the radix-2 FFT algorithm can be summarized with the
butterfly computations illustrated in Figure 2. Observing
these butterfly computations, we can determine that the
radix-2 algorithm requires only (N / 2)logy(N) multi-
plications and Nlog,(N) additions. The values of Wy used
in Figure 2 are commonly known as “twiddle factors” and
can be computed before the algorithm is performed.

In Figure 2, the input to the FFT is shown in its peculiar,
original order with the indices bit-reversed. Therefore,
computing the radix-2 FFT algorithm with N = 8 requires
the input data to be reordered from:

0 (000b), 1 (001b), 2 (010b), 3 (011b), 4 (100b), 5(101b),
6(110b), 7(111b)

to:

0 (000b), 4, (100b), 2 (010b), 6 (110b), 1 (001b), 5 (101),
3(011),7 (111).

The FFT output appears in the correct order. Figure 2
also reveals that the results of the individual butterfly
computations are the only data required for the next stage
of the FFT. Because the computations are done “in place,”
new values can replace old values and only 2N variables
are required to compute an FFT with N samples (2N
variables are required because each value has a real and an
imaginary part).

13

x[0]

x(1]
)| a a+WKlb
WHERE g)

v X(3] b a-Web
" x[4]

AND
x[5]
X(6] W '& = e-j2nk/N

27k, .. 2ok

7] = cos(W)- JS\H(W)

Figure 2. A butterfly computation is used to perform an FFT for N = 8.

When the FFT is complete, the results are in complex
notation. Equations 4 and 5 convert the results into polar
notation:

Xyaon (k) = vV Xge(k) + Xy (k) (Eq 4)
Xpnnsi (k) = arctan(3] (Eq5)

The DSP literature includes many optimizations for the
DFT/FFT algorithm described above to make it faster and
smaller. One of the most important optimizations (and
also perhaps the easiest to implement) arises from the
realization that the magnitude of the DFT of a real-valued
signal is symmetric around X(N / 2), therefore:

X(ky=X*(N/k) (Eq6)
Writing an FFT is not simple. Several limitations of low-
power puCs complicate the task even further.

Memory The selected pC has 2kB of RAM. Knowing
that the algorithm requires 2N 16-bit variables for FFT
data, our pC can perform FFTs with N up to 512.
However, other parts of the firmware also require a few
bytes of RAM. For our implementation, we therefore limit
N to 256. Using 16-bit variables to represent the real and
imaginary parts of every value, 1024 bytes of RAM are
required for FFT data.

Speed Despite having a high MIPS/mA rating, low-
power uCs still require some optimization to minimize the
number of instructions required to run the FFT.
Fortunately, the C compiler used for this application (IAR
Embedded Workbench for MAXQ at www.iar.com)
includes a number of optimization levels and settings.
Careful use of the hardware multiplier allows the code to
be optimized to an acceptable level.

No Floating-Point Capability The typical low-power
pnC chosen does not have floating-point capability.
Consequently, fixed-point arithmetic is required for all

computations. To represent fractional numbers, the
firmware uses signed Q8.7 notation. The firmware
therefore assumes:

¢ Bits 0 to 6 represent the fractional part of every number

* Bits 7 to 14 represent the integer part of every number
* Bit 15 represents the sign bit (two’s complement)

These assumptions have no effect on additions and
subtractions, but care must be taken during multiplications
to align the numbers to Q8.7 format.

The notation chosen also accommodates the largest
number that the FFT algorithm may encounter, while
providing the highest accuracy. For example, our ADC
provides signed 8-bit samples in two’s complement format.
If our input is a DC voltage with maximum amplitude (127
for signed 8-bit samples), the spectrum would be entirely
contained in X(0) and be equal to 32512 in Q8.7 notation.
This number fits into a single, signed, 16-bit value.

The Firmware

The following sections describe the firmware that
computes a radix-2 FFT on a low-power nC. When the
samples are read from the ADC, they are stored in the
x_n_re array. This array represents the real values of
x(n). The imaginary values, initialized to zero before the
FFT begins, are stored in the x_n_im array. When the
FFT is complete, the spectrum results will have replaced
the original sampled values and be stored in x_n_re and
X n_im.

Gathering Samples

The FFT algorithm assumes that the samples are taken at a
fixed sampling frequency. Gathering samples for an FFT
can cause difficulties if not done carefully. For example,
jitter in the sample interval causes errors in the FFT results
and should be minimized.

A decision statement in the ADC sample loop can cause
jitter in the sample interval. For example, our system reads
signed, 8-bit samples from an ADC and stores them in an
array of 16-bit variables. Two pseudo-code algorithms for
performing this ADC read-and-store function are shown in
Listing 1. The method presented in Algorithm 1 will cause
jitter in the sample interval because a negative sample
requires more time to read and store than a positive sample.

Listing 1. Two pseudo-code algorithms for ADC sam-
pling are illustrated. The second algorithm does not
cause the same problem as the first—jitter in the
sample interval.

// ALGORITHM 1:
FREQUENCY — BAD!

INCONSISTENT SAMPLING

// sample[] is an array of 16-bit variables
for i = 0 to (N-1)

begin

14

doADCSampleConversion() //
Instruct ADC to sample Vin

sample[i] = read8BitSampleFromADC() //
Read 8-bit sample from ADC

if (sample[i] & 0x0080) // If
the 8-bit sample was negative

sample[i] = sample[i] + OxXFF00 //
Make the 16-bit word negative

end

// ALGORITHM 2: FIXED SAMPLING FREQUENCY —
GOOD!

// sample[] is an array of 16-bit variables
for i = 0 to (N-1)
begin

doADCSampleConversion () //
Instruct ADC to sample Vin

sample[i] = read8BitSampleFromADC() //
Read 8-bit sample from ADC
end
for i = 0 to (N-1)
begin
if (sample[i] & 0x0080) // 1f

the 8-bit sample was negative

sample[i] = sample[i] + OxXFF00 //
Make the 16-bit word negative

end

Trigonometric Lookup Tables

The FFT algorithm uses lookup tables (LUTSs) instead of
calculating the value of cosine or sine. The declarations
for the sine and cosine LUTs are given in Listing 2;
comments in the actual firmware include source code for
the program used to automatically generate these LUTs.
Both LUTSs have N /2 elements because the indices of the
twiddle factors vary from O to (N / 2) - 1 (see Figure 2).

Listing 2. LUTs are shown for sine and cosine functions.
{+128,+127,+127, ...

const int cosLUT[N/2]
,=127,-127,-127}%;

const int sinLUT[N/2]
9, +6, +3};

(40,43, 46, ...

The arrays containing these LUTs are declared as const,
forcing the compiler to store them in code space instead of
data space. Because the LUT values must be in Q8.7
notation, they correspond to the actual cosine and sine
values multiplied by 27.

Bit Reversal

The bit-reversal order (where N is known) can be
calculated at runtime, indexed using a lookup table, or
written directly with an unrolled loop. Each of these

methods has trade-offs in regard to the size of the source
code and execution speed. This FFT application performs
bit reversal using an unrolled loop, which results in longer
source code but faster execution. The code in Listing 3
shows the implementation of this unrolled loop.
Comments in the applications firmware include source
code for the program that automatically generates this
unrolled loop.

Listing 3. An unrolled loop with N = 256 is used for
bit reversal.

i=x n re[1]; x n re[
x n re[l28]=i;

1]=x n re[128];

i=x n re[2]; x n re[
x n re[64]=i;

2]=x n re[64];

i=x n re[3]; x n re[
x n re[l92]=i;

3]=x n re[192];

i=x n re[4]; x n re[
x n re[32]=i;

4]=x n re[32];

i=x n re[207]; x n re[207]=x_n_re[243];
X n re[243]=i;
i=x n re[215]; x n re[215]=x n re[235];
x n re[235]=i;
i=x n re[223]; x n re[223]=x n re[251];
x n re[251]=i;
i=x n re[239]; x n re[239]=x n re[247];
X n re[247]=i;

The Radix-2 FFT Algorithm

After the samples have been reordered using bit reversal,
the FFT can be computed. The firmware for this
implementation of the radix-2 FFT performs the butterfly
computations seen in Figure 2 with three main loops. The
outside loop counts through the log,(N) stages of the FFT
computation. The inner loops perform the individual
butterfly computations of each stage.

The heart of the FFT algorithm is the short block of code
that performs each butterfly computation. This block,
shown in Listing 4, is unfortunately the only nonportable
firmware in this implementation. The MUL_1 and MUL_ 2
macros use the nC’s hardware multiplier to perform
multiplications in a single instruction cycle. The contents
of these macros, which are specific to the MAXQ2000, can
be fully examined in the actual firmware.

Listing 4. Butterfly computation is performed in C.

/* (1) Macro MUL 1(A,B,C): C=A*B (result
in 08.7)*/
/* (2) Macro MUL 2(A,C) : C=A*last B (result
in 08.7)*/

MUL_1(cosLUT[tf],x n re[b],resultMulReCos);
MUL 2 (sinLUT[tf],resultMulReSin);
MUL 1(cosLUT[tf],x n im[b],resultMulImCos);

15

MUL 2 (sinLUT[tf],resultMulImSin);

X n re[b] = x n re[a]-
resultMulReCos+resultMulImSin;

x n im[b] = x n_im[a]-resultMulReSin-
resultMulImCos;

X n re[a] = x n re[a]+resultMulReCos-
resultMulImSin;

x n im[a] =

X n_im[a]+resultMulReSin+resultMulImCos;

Complex to Polar Conversion

To determine the magnitude for the spectrum of Vi, we
must convert the complex values of X(k) into polar
notation. The firmware that implements this conversion is
shown in Listing 5. The magnitude values replace the
original results of the FFT that are no longer needed by
the firmware.

Listing 5. FFT results are converted from complex to
polar notation.

const unsigned char magnLUT[16][16] =

{
{0x00,0x10,0x20, ,0xd0,0xe0,0xf0},
{0x10,0x16,0x23, ,0xd0,0xe0,0xf0},
{0xe0,0xe0,0xe2, ,0xff,0xff, 0xff},
{0x£f0,0x£f0,0xf2, ,0xff,0xff,0xff}
b

oo

oo

/* Compute x n re=abs(x n re) and
X n_im=abs(x n im) */

oo

X n re[0] = magnLUT[x n re[0]>>11][0];

for(i=1; i<N DIV 2; i++)

X n re[i] =
magnLUT[x n re[i]>>11][x n im[i]>>11];

X n re[N DIV 2] =
magnLUT[x n re[N DIV 2]>>11][0];

A two-dimensional LUT determines the magnitude
instead of the computation from equation 4. The first
index is 4 most significant bits (MSB) of the real part of
the spectrum, while the second index is 4 MSB of the
imaginary part of the spectrum. To obtain these 4 MSB,
the signed, 16-bit values are right shifted 11 times. Before
the real and imaginary parts of the spectrum can be used
as indices, they are replaced by their absolute values.
Therefore, the sign bit will be zero.

Because it is known from equation 6 that the magnitude
of the spectrum is symmetric with respect to X(N / 2),
only the magnitudes of the first (N / 2) + 1 spectrum
values are converted to polar notation. Also, it can be
shown that the imaginary parts of X(0) and X(N / 2) are
always zero for real-valued input samples. These two
magnitudes are therefore calculated separately. Comments
in the actual firmware for this project include source code
for the program that automatically generates the LUT for
the magnitude of X(k).

Hamming or Hann Windows

The firmware for this project includes LUTs (in Q8.7
format) to apply a Hamming window or a Hann window
to the input samples. Windowing is useful to reduce
spectral leakage that can result from truncating x(n) in the
time domain. The equations for the Hamming and Hann
window functions are shown in equations 7 and 8,
respectively.

h(n) = 0.54 - 0.46c0s (13“]) (Eq7)
h(n) = 0.5 [1] cos(]\2775"]) (Eq 8)

Listing 6 shows the code for the implementation of these
functions. Again, comments in the actual firmware for
this project include source code for the program that
automatically generates the LUTs for these windowing
functions.

Listing 6. LUTs are shown for the implementation of
Hamming and Hann window functions.

const char hammingLUT[N] = {+10, +10, +10, ...

,+10, +10, +10};

const char hannLUT[N]
, +0, +0, +0};

{ +0, +0, +0, ...

co e

for(i=0; i<256; i++)
{
#ifdef WINDOWING HAMMING

MUL 1(x n re[i],hammingLUT[i],x n re[i]); //
xX(n)*=hamming(n);

#endif
#ifdef WINDOWING HANN

MUL 1(xX n re[i],hannLUT[i]),X n re[i]);
// x(n)*=hann(n);

#endif

16

Testing the Results

To test the result of the FFT application, the firmware
uploads the magnitude of X(k) to a PC using the pC’s
UART port. FFT Graph, software written specifically to
read these magnitude values from the PC’s serial port,
graphs the magnitude of the calculated spectrum in real
time. (This software is included with the firmware for this
project.) Figure 3 shows the results displayed from FFT
Graph for four different input signals with the nC
sampling the input voltage at 200ksps:

a) 4.3V DC signal

b) 50kHz sine wave
¢) 70kHz sine wave

d) 6.25kHz square wave

What Is Next?

The interested reader can spend an unlimited amount of
time optimizing and configuring this FFT implementation.
Although the radix-2 algorithm was chosen for this article,
other algorithms can dramatically reduce the number of
additions and multiplications required. Many optimi-
zations not presented in this article also exist for increasing
the speed of a FFT. For example, with real-valued input
samples, the imaginary part of the input samples is always
zero, and only the first half of the spectrum is significant.
Using this information, the first and last stages of the FFT

can be optimized for faster execution, but more program
space may be required.

The algorithm presented in this article is, however, a good
starting point for an FFT algorithm written specifically for
a low-power pC. For more information and
implementation details, please review the well-
commented firmware for this application.

Resources

Cooley, J. W. and J. W. Tukey, “An Algorithm for the
Machine Computation of Complex Fourier Series,”
Mathematics Computation, Vol. 19, pp 297-301, 1965.

Lemieux, Joe, “Fixed-point math in C,” Embedded
Systems Programming, October 2003.

Proakis, John G. and Dimitris G. Manolakism, Digital
Signal Processing Principles, Algorithms, and
Applications, 3rd Edition, Prentice Hall, 1996.

Smith, Steven W., The Scientist and Engineer’s Guide to
Digital Signal Processing, 2nd Edition, California
Technical Publishing, 1999.

A similar article appeared in the October, 2005 issue of
Embedded Systems Design.

PRI | e croon—cove————TaTEY
Commands Commands
IX(£) | 1Z(£) 1
FS FS
Va ¥ Ya Y%
(@) ®) _
TR coooh-covs————S=TEY
Commands Commands
1X(£) | 1x(£)1
Ya ¥ Ya %

(©) (d)

Figure 3. FFT Graph is used to plot the results of spectra calculated by a low-power uC.

17

DESIGN SHOWCASE

Precision Circuit Monitors
Negative Supply Current

Supply-current monitoring is a necessary feature in
high-reliability systems where excessive current can
cause damage or compromise safety. Such systems
avoid overload faults by monitoring their power
supply and shutting it down before a fault occurs.
Most current-monitoring ICs, however, are designed
for positive-voltage supplies. For negative supplies,
the circuit of Figure 1 monitors load current and
provides a proportional output voltage.

Voltages at the inverting and noninverting terminals
of the op amp (IC1A) are forced to be equal by an
active-feedback current mirror. Vg = Vggnsg and
therefore:

RSENSE
1

Iri=1p

Three alternatives are now possible. You can convert
the output current (Ig) to voltage by connecting
resistor Rg to ground, to V¢, or to an inverting
amplifier. Connecting Rg to ground (GND) eliminates

the need for a positive supply. In that case, the output
voltage is negative and proportional to load current:

Vo =-I, % Ro (Rp connected to GND)

1

You can connect Rg to V¢ for applications that
require a positive output voltage, but the output will
be referenced to Vcc:

Vo=Vee-1p RSENSE Ry (Ro connected to Ve)

1

To reference the positive output voltage to ground,
you must use an inverting amplifier (IC1B), as shown
in Figure 1:

(Ro connected to an

Vo = 1oRsense R—T inverting amplifier)

NEGATIVE POWER-
SUPPLY OUTPUT

-5.0V
NEGATIVE POWER-
SUPPLY INPUT <

MAX4494

Ra
1kQ

FDN337N
FAIRCHILD

OUTPUT

LOAD

Ro
4.99%Q

CURRENT-
MONITOR QUTPUT

R
Vo =1IoRsense ?2

1
1
1
1
1
1
1
! 1

Ve OR GND

Figure 1.

This current-sensing circuit monitors a negative power supply and provides a positive output voltage proportional to the load current.

18

DESIGN SHOWCASE

Note that Rg does not affect output voltage for the
inverting-amplifier, but this resistor is usually needed
for stability. Rg can be optional, but it also provides
stability by isolating the op amp from the capacitive
load of the MOSFET gate. Finally, Rc compensates
for the op amp’s input bias current.

Figure 2 shows measurement error vs. load current
for the Figure 1 circuit. To ensure accurate current
measurements, the resistors (except for Rg and R¢)
should have a tolerance of 1% or better. Rggnsg must
be rated to dissipate the power associated with high
load currents.

A similar article appeared in the September, 2005
issue of Power Electronics Technology.

OUTPUT ERROR vs. LOAD CURRENT

10

ERROR (%)

N

9
8
7
6
5
) \
3
2
1
0

0 200 400 600 800 1000
LOAD CURRENT (mA)

Figure 2. Error for the current sensor of Figure 1 is less than 2% at
full scale, but the op amp’s inherent input-offset voltage
reduces the accuracy at lower levels of current.

19

